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Object-Oriented Technology (OOT) In Civil Aviation Projects: Certification 
Concerns 

 
Abstract 
 

Object-Oriented Technology (OOT) has been extensively utilized throughout the non-
safety rated software development community (e.g., Windows 98 and Internet software). 
Although the adoption of OOT has been limited in the airborne civil aviation community, OOT 
is being considered by an increasing number of manufacturers of airborne software.  Application 
of RTCA DO-178B/EUROCAE ED-12B ("Software Considerations in Airborne systems and 
Equipment Certification") is the primary means of approving software within these airborne 
systems. However, DO-178B/ED-12B was developed prior to the widespread use of OOT.  The 
application of DO-178B/ED-12B to systems developed using OOT is not well understand in the 
industry.  This paper will provide an introduction to the issues surrounding the development of 
aviation software using OOT within the context of DO-178B/ED-12B assessments.  This 
introduction will demonstrate that DO-178B/ED-12B is compatible with OOT but that there are 
significant issues that need to be addressed. Other papers will be developed to address these 
issues in more depth. 
 

Introduction 
 
Object-Oriented Technology (OOT) is seen by many in the mainstream software 

community as the “silver bullet” that will take us into the new millennium of software 
development. OOT is appealing because of the number of available tools, the emphasis on reuse, 
and the appeal to software designers.  It is touted as a technology that saves money, improves 
quality, and saves time.  

However, to date, few airborne computer systems in civil aviation have implemented 
OOT.  Safety-critical designers tend to use proven technologies and, as a result lag, a few years 
behind the mainstream designers of non-safety software. Since OOT has proven to be cost-
effective and technically sound for many projects, manufacturers of safety-critical systems are 
now considering its use.   

There are some concerns when using OOT that must be carefully considered.  This paper 
will provide an overview of OOT, an overview of RTCA DO-178B/EUROCAE ED-12B 
(“Software Considerations in Airborne Systems and Equipment Certification”), and some of the 
concerns of using OOT in airborne aviation software. This is merely the beginning of a more in-
depth study and will likely be followed by other papers. 

Overview of OOT 
 
OOT is a software development technique that is centered around “objects.”  IEEE refers 

to OOT as “a software development technique in which a system or component is expressed in 
terms of objects and connections between those objects” [4].  An object can be compared to a 
“black box” at the software level – it sends and receives messages.  The object contains both 
code (functions) and data (structures).  The user does not have insight into the internal details of 
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the object, thus giving it the comparison to a black box.  An object can model real world entities, 
such as a sensor or hardware controller, as separate software components with defined behaviors.   

A major concept in OOT is the “class.”  Grady Booch, a champion in OOT methodology, 
defines a “class” as “a set of objects that share a common structure and a common behavior” [2].   
A class contains the attributes and operations that are required to describe the characteristics and 
behavior of a real world entity.  Figure 1 illustrates a representation of a class definition for an 
object. 

Principles of OOT 
 
There are seven principles that form the foundation for OOT:  abstraction, encapsulation, 

modularity, hierarchy, typing, concurrency, and persistence [2].  Not all of these principles are 
unique to OOT, but OOT is the only development methodology that embodies all seven as a 
consistent model.  Abstraction, modularity, concurrency, and persistence are principles that are 
commonly used in other development methodologies.  However, encapsulation (using a 
technique called information hiding), hierarchy (using a technique called inheritance), and 
typing (using a concept called polymorphism) are relatively unique to OOT. Each of the seven 
principles is described below. 

 
Abstraction is one of the fundamental ways that complexity is addressed in software 

development.   “An abstraction denotes the essential characteristics of an object that distinguish 
it from all other kinds of objects and thus provide crisply defined conceptual boundaries, relative 
to the perspective of the viewer" [2]. 

Encapsulation is the process of hiding the design details in the object implementation.  
Encapsulation can be described as “the mechanism that binds together code and the data it 
manipulates, and keeps both safe from outside interference and misuse” [11].  Encapsulation is 
generally achieved through information hiding, which is the process of hiding the aspects of an 
object that are not essential for the user to see.  Typically, both the structure and the 
implementation methods of the object are hidden [2]. 

 
Modularity is the process of partitioning a program into logically separated and defined 

components that possess defined interactions and limited access to data.  Booch writes that 
modularity is a “property of a system that has been decomposed into a set of cohesive and 
loosely coupled modules” [2]. 

 
Hierarchy is simply the ordering of abstractions.  Examples of hierarchy are single 

inheritance and multiple inheritance.  In OOT, when a sub-class is created, this new class 
“inherits” all of the existing attributes and operations of the original class, called the “parent” or 
“superclass” [8].  Inheritance is a relationship between classes where one class is the “parent” 
(also called “base,” “superclass,” or “ancestor”) class of another [6].  One author puts it this way, 
“Inheritance is a relationship among classes where a child class can share the structure and 
operations of a parent class and adapt it for its own use” [5]. 

 
Inheritance is one of the key differences between OOT and conventional software 

development.  There are two types of inheritance: single inheritance and multiple inheritance.  In 
single inheritance, the sub-class inherits the attributes and operations from a single superclass.  
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In multiple inheritance, the sub-class inherits some attributes from one class and others from 
another class.  Multiple inheritance is controversial, because it complicates the class hierarchy 
and configuration control [9]. 

 
Typing is a principle that is used in OOT that has many definitions.  Booch presents one 

of the most clear and concise definitions by stating, “Typing is the enforcement of the class of an 
object, such that objects of different types may not be interchanged, or at the most, they may be 
interchanged only in very restricted ways” [2].  Examples of OOT typing are strong typing, weak 
typing, static typing, and dynamic typing.  Each OOT programming language varies in its 
implementation of typing. 

Another OOT concept closely related to typing is polymorphism.  Polymorphism comes 
from the Greek meaning “many forms.”  It allows one name to be used for two or more related 
but different purposes [11].  It is the ability of an object to assume or become many different 
forms of object.  Polymorphism specifies slightly different or additional structure or behavior for 
an object, when assuming or becoming an object [6]. This allows different underlying 
implementations for the same command.  For example, assume there exists a vehicle class that 
includes a  steer-left command.  If a boat object was created from the vehicle class, the steer-left 
command would be implemented by a push to the right on a tiller.  However, if a car object was 
created from the same class, it might use a counter-clockwise rotation to achieve the same 
command. 

 
Concurrency is the process of carrying out several events simultaneously. 
 
Persistence is “the property of an object through which its existence transcends time (i.e., 

the object continues to exist after its creator ceases to exist) and/or space (i.e., the object’s 
locations moves from the address space in which it was created)” [2]. 

 
OOT Methodology 

 
Everyone seems to have a slightly different perspective of what OOT actually entails. 

OOT can be described in four phases:  Object-Oriented Analysis (OOA), Object-Oriented 
Design (OOD), Object-Oriented Programming (OOP), and Object-Oriented Verification/Test 
(OOV/T).  The implementation of these phases is typically iterative or evolutionary.  An 
overview of each phase will be addressed below. 

 
OOA is the process of defining all classes that are relevant to solve the problem and the 

relationships and behavior associated with them [9].  A number of tasks occur to carry out the 
OOA as shown in Figure 2.  The tasks are reapplied until the model is completed.  As shown in 
Figure 2, use cases, class-responsibility-collaborator (CRC) models, object-relationship (OR) 
models, and object-behavior  (OB) models are methods typically used to carry out the OOA.  
The use case is a method utilized to identify the user’s requirements.  The CRC model is used to 
identify the class attributes, operations, and hierarchy.  The OR model is used to illustrate the 
relationship between the numerous objects.  And, the OB model is used to model the behavior of 
each object.  
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OOD transforms the OOA into a blueprint for software construction.  Four layers of 
design are usually defined: subsystem layer, class and object layer, message layer, and 
responsibilities layer.  The subsystem design layer represents each subsystem that enables 
software to achieve the requirements.  The class and object design layer contains class 
hierarchies and object designs.  The message design layer contains the internal and external 
interfaces to communicate between objects.  The responsibilities design layer contains the 
algorithm design and data structures for attributes and operations of each object. 

 
OOP is the coding phase of the design project, using an object-oriented (OO) language.  

There are dozens of OO languages.   Three of the most well known are C++, Smalltalk, and Java.  
C++ and Java are of particular interest for designers of embedded software.  Java’s platform 
independence and C++’s tool support make these two languages very appealing to the developers 
of airborne systems.   

 
There have been a few C++ applications on aviation products—mostly in less safety-

critical systems.  One area of great concern for these programs was the use of certain built-in 
C++ functions.  For example, the use of “new” and “delete” functions was prohibited because of 
non-deterministic behavior due to dynamic memory management functions.  Assuring the lack of 
memory leakage was another issue that was addressed.  The developers on these programs found 
that the use of C++ functions and built-in libraries required extensive verification and testing in 
order to understand their behavior. 

In 1996 David Binkley of the National Institute of Standards and Technology (NIST)  
published a paper entitled “C++ in Safety Critical Systems.”  The paper outlined guidelines for 
using C++ to create safe software.  Adherence to these guidelines can lead to safer and more 
maintainable C++ programs. The paper also outlined a series of techniques and examples for 
creating safer C++ programs.  The paper is available on the world wide web [1]. 

An article in Computer Design stated, “For embedded systems, a language generating a 
great deal of interest today is Embedded C++, a subset of ANSI C++ that offers certain 
advantages for real-time development.”  Embedded C++ (EC++) omits some of the 
“problematic” features of ANSI C++.  For example, multiple inheritance, virtual base classes, 
run-time identification, templates, exceptions, and namespaces are deleted [13]. 

Brian Wichmann recently conducted a web-site discussion entitled “Moderated 
Discussion on C++ and Safety.”  This discussion attracted world-wide input about C++ 
applicability to safety-critical projects.  The discussion demonstrated how controversial the use 
of C++ is for safety-critical applications. 

Wichmann began the discussion with this thought: “Although the major problem with 
safety-critical software is getting the requirements correct, the impact of the language is 
significant… The main problems I see with C++ arise from its 'high-level' nature. For instance, 
it is hard to show that there is no storage leak or bound the storage requirements statically. 
Another problem is that in several cases, the order in which an execution is performed is not 
defined, making it effectively impossible to guarantee predictable execution” [14]. 

The discussion to Wichmann’s question goes on for eight pages. Some of the more 
enlightening and relevant discussions are included below in order to illustrate the controversy of 
this subject.  Peter Fenelon stated the following regarding sub-sets of C++:  I'd be highly 
reluctant to see C++ in any safety-related or critical environment. By the time "unsafe" or 
"difficult" features are ruled out -- I'm referring particularly to exception handling, the use of 
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templates and Standard Template Library (STL), multiple inheritance, and so on -- what's left 
isn't much more than ANSI C (a language I have far fewer quibbles with, if sensible guidelines 
are followed)…”  [14]. 

Another interesting comment by Bob Gorman endorsed the possibility of using C++ on 
safety-critical systems:  “It seems to me that many people here are evaluating C++ only as a 
sum of its features. Of course we can pick apart any language if we only focus its features or lack 
of them. However, it's the real world implementation of the features that makes the application 
safe and robust…” [14]. 

Jim Jaskol wrote: “… The tools, knowledge base, and experience surrounding C/C++ 
gives it tremendous advantages in many areas over other languages--advantages that can 
translate into safer systems.  C++ has too much of a following to be ignored…” [14]. 

 
Because of its platform independence and widespread use by the mainstream software 

development community, Java has recently become a desirable language for developers of 
safety-critical systems.  Java was originally developed for embedded systems on cable television 
boxes.  Since most safety-critical systems are embedded, Java has some potential.  Some aviation 
companies are currently performing studies to determine the feasibility of using Java in safety-
critical systems.   

There are currently many concerns regarding the use of this language.  Java is an 
extremely powerful language; however, it lacks robustness.  There are new releases of Java every 
few months; this fast production of the language does not allow it to become robust.  One 
software developer who uses Java for browsers claims that the browsers “crash” a lot.  Frequent 
crashing may be tolerable for non-safety applications; however, it is not acceptable for a safety-
critical system, such as an airplane or a nuclear power plant. 

An article in Computer Design explored the use of Java in safety-critical systems.  A 
positive aspect of the language is that the absence of pointers and automatic checking for 
common errors reduces the potential for memory errors.  However, Java’s use of garbage 
collection is problematic, because it is a non-deterministic memory management technique [13]. 

Java has matured rapidly in the last two years.  Despite a few problems, the power and 
potential of Java is impressive.  With improvements and further investigation, it could become a 
language appropriate for use in safety-critical systems. 

 
OOV/T is the process of detecting errors and verifying correctness of the OOA, OOD, 

and OOP.  OOV/T includes reviews, analyses, and tests of the software design and 
implementation. OOV/T requires slightly different strategies and tactics than the traditional 
structured approach.  The variance in the approach is driven by characteristics like inheritance, 
encapsulation, and polymorphism.  Most developers use a “design for testability” approach to 
begin addressing any verification/test issues early in the program. 

Overview of DO-178B/ED-12B 
 

DO-178B/ED-12B is the guidance document that most civil aviation manufacturers use 
for certification approval of their airborne software.  In order to assess how DO-178B/ED-12B 
applies to OOT, it is important to understand the background and basics of the document.   

DO-178/ED-12 (no revision) was first developed by the international civil aviation 
community in 1982.  It was revised in 1985 to add more detail.  In 1992, DO-178B/ED-12B was 
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completed and has become the software “standard” for airborne software in civil aviation 
products.  The DO-178/ED-12 document and all of its revisions were sponsored by RTCA and 
EUROCAE, with the involvement of aviation, software, and certification experts from across the 
world. 

DO-178B/ED-12B focuses on the software aspects of system development.  As part of the 
systems engineering task, a system safety assessment must be performed before DO-178B/ED-
12B can be applied to the software development effort.  A system safety assessment is a process 
to identify the hazards, failure conditions leading to these hazards, and the effects of mitigation 
strategies.  The safety assessment task determines a software level based upon the contribution of 
the software to the potential failure conditions defined in the system safety assessment process.  
The five software levels, A to E, are summarized in Table 1 [10]. 

These software levels define differing degrees of rigor for the software development 
process.  Annex A in DO-178B/ED-12B lists the objectives that must be met for each specific 
software level.  These software levels define a number of desirable attributes for the software 
development and verification processes.  The differences in rigor are determined by the number 
of objectives which need to be satisfied, whether a specific objective is satisfied with 
independence, and the formality of configuration control of the software data produced during 
development.  For example, the number of objectives for each software level is listed below: 

• Level A: 66 objectives 
• Level B:  65 objectives 
• Level C:  58 objectives 
• Level D: 28 objectives 
• Level E:  0 objectives 

DO-178B/ED-12B is divided into development activities and integral processes.  The 
development activities include planning, requirements, design, code, and integration.  The 
integral processes include verification, configuration management, quality assurance, and 
certification liaison.  The integral processes are overlaid on each of the development activities 
(i.e., verification, configuration management, quality assurance, and certification liaison are 
applied to each development activity). 
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Failure 
Condition 
Category 

Description SW Level 

Catastrophic Failure conditions which would prevent continued safe flight and landing of 
the aircraft. 

A 

Hazardous Failure condition which would reduce the capability of the aircraft or the 
ability of the crew to cope with adverse operation conditions to the extent 
that there would be: 
(1) a large reduction in safety margins or functional capabilities, 
(2) physical distress or higher workload such that the flight crew could not 

be relied on to perform their tasks accurately or completely, or 
(3) adverse effects on occupants including serious or potential fatal 

injuries to a small number of occupants. 

B 

Major Failure conditions which would reduce the capability of the aircraft or the 
ability of the crew to cope with adverse operation conditions to the extent 
that there would be, for example, a significant reduction in safety margins or 
functional capabilities, as significant increase in crew workload or in 
conditions impairing crew efficiency, or discomfort to occupants, possibly 
including injuries. 

C 

Minor Failure conditions which would not significantly reduce aircraft safety, and 
which would involve crew actions that are well within their capabilities.  

D 

No Effect Failure conditions which do not affect the operational capability of the 
aircraft or increase crew workload. 

E 

 
Table 1 – DO-178B/ED-12B Software Levels 

 
The objectives of DO-178B/ED-12B are listed in Annex A of the document and are 

organized around the development activities and integral processes previously described.  There 
are ten tables in Annex A with objectives—the subject of each table is listed below: 

• Table A-1:  Software Planning Process 
• Table A-2:  Software Development Processes  
• Table A-3:  Verification of Outputs of Software Requirements Process 
• Table A-4:  Verification of Outputs of Software Design Process 
• Table A-5:  Verification of Outputs of Software Coding & Integration Processes 
• Table A-6:  Testing of Outputs of Integration Process 
• Table A-7:  Verification of Verification Process Results 
• Table A-8:  Software Configuration Management Process 
• Table A-9:  Software Quality Assurance Process 
• Table A-10:  Certification Liaison Process 

Table A-4 objective 1 is used in Figure 3 to illustrate the Annex A table layout and 
structure. The first set of columns contains information about the DO-178B/ED-12B objectives: 
objective number, description, and reference to DO-178B/ED-12B paragraph where that 
objective is further detailed.  The next set of columns with headers A, B, C, D show the 
applicability of that particular objective to the software level.  For example, objective 1 is 
applicable for levels A, B, and C; however, it does not need to be satisfied for software level D. 
If the circle indicating applicability is filled in, then that objective must be satisfied with 
independence.  The next series of columns describe the outputs produced as evidence that the 



9 
NOTE:  This position paper has been coordinated among the software specialists of certification authorities 
from the United States, Europe, and Canada.  However, it does not constitute official policy or guidance from 
any of the authorities.  This document is provided for educational and informational purposes only and 
should be discussed with the appropriate certification authority when considering for actual projects. 

objective is satisfied.  The “Description” column lists where that data is found.  The “Ref.” 
Column identifies the paragraph within Chapter 11 of DO-178B/ED-12B that details the 
attributes of that software data.  The last 4 columns correlate the rigor of configuration 
management of the particular output with the associated software level.  Control category 1 
requires more configuration management activities than control category 2.  For instance, control 
category 1 requires problem reporting and change control, where as control category 2 requires 
only change control. 

 
Assessment to DO-178B/ED-12B is performed through on-site reviews and/or desk-top 

(data) reviews by FAA personnel, Designated Engineering Representatives, and/or software 
developer’s team members.  The assessment evaluates the data to determine if the objectives 
listed in Annex A of DO-178B/ED-12B are met.  In June of 1998, the FAA released a job aid 
entitled, “Conducting Software Review Prior to Certification”.   The job aid outlines a process 
for assuring compliance to the objectives of DO-178B/ED-12B.  The job aid is available 
electronically and is designed to be tailored to meet the specific needs of the evaluator or project. 

This section has provided a very high level overview of DO-178B/ED-12B.  More 
information may be obtained by reading DO-178B/ED-12B itself, by participating in related 
RTCA and EUROCAE activities, and by reviewing the FAA job aid. 

Concerns in Use of OOT in Airborne Software 
 

For most software projects seeking FAA approval, the objectives of DO-178B/ED-12B 
should be satisfied, as appropriate for the software level.  This section will look at some of the 
issues to be addressed by a software development team using OOT in airborne civil aviation 
software in order to meet the objectives of DO-178B/ED-12B.  This should not be considered a 
comprehensive study of the issues – there are likely additional issue to be addressed, depending 
on the specific project details (for example, each OO language and/or compiler may have 
different certification issues). 

Planning.  The OOT software development process should be carefully planned and 
documented.  In particular, the Plan for Software Aspects of Certification document should 
address any special certification issues in order to get the certification authority’s “buy-in.”  
Additionally, the development standards should address any special limitations for the 
development team to consider (e.g., no multiple inheritance, etc.). 

Traceability. DO-178B/ED-12B requires traceability from requirements to design to code 
to test cases/results.  When inheritance is used in the design, special care must be taken to 
maintain traceability.  This is particularly a concern, if multiple inheritance is used.  Overall, 
multiple inheritance is a concern to certification authorities.  If used, it should be very carefully 
applied and addressed in the development standards for the project. 

Traceability is made more difficult because there is often a lack of OO methods or tools 
for the full software lifecycle.  For example, tools/methods often cover OOA or OOD but not 
both. New tools are beginning to address this gap [3]. 

Target Compatibility.  A number of DO-178B/ED-12B objectives address the topic of 
target compatibility.  Using classes, instantiation, and automatic memory management typically 
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implies the use of dynamic memory allocation. In typical implementations, dynamic memory 
algorithms require periodic reorganization of the memory to reduce the inevitable fragmentation. 
This leads to indeterminate execution profiles.  As an alternative to the typical implementation 
provided by most OO languages, the developer might consider the feasibility of designing a 
deterministic memory allocation subsystem.  Another approach which might be feasible, is to 
pre-allocate objects during program initialization and avoid creating or deleting them after that. 
Dynamic memory allocation must be verified in terms of both space (available memory) and 
execution time in order to determine compatibility with the target. 

Structural Coverage.  DO-178B/ED-12B has three forms of structural coverage, which 
are applicable depending on the software level: statement coverage (Levels A, B, & C); decision 
coverage (Levels A & B); and modified condition/decision coverage (MC/DC) (Level A only).  
The use of inheritance and polymorphism might cause difficulties in obtaining structural 
coverage, particularly decision coverage and MC/DC.  Source to object code correspondence 
will vary between compilers for inheritance and polymorphism. 

Dead/Deactivated Code.  DO-178B/ED-12B defines dead and deactivated code as 
follows: 

“Dead code - Executable object code (or data) which, as a result of a design error 
cannot be executed (code) or used (data) in a operational configuration of the target computer 
environment and is not traceable to a system or software requirement. An exception is embedded 
identifiers” [10]. 

“Deactivated code - Executable object code (or data) which by design is either (a) not 
intended to be executed (code) or used (data), for example, a part of a previously developed 
software component, or (b) is only executed (code) or used (data) in certain configurations of the 
target computer environment, for example, code that is enabled by a hardware pin selection or 
software programmed options” [10]. 

DO-178B/ED-12B basically requires any dead code to be removed and deactivated code 
to be verified (analysis and test) to prove that it cannot be inadvertently activated. 

When superclass methods are replaced by sub-class methods (i.e., overridden methods), 
there is a possibility that dead or deactivated code could be introduced.  Structural coverage 
analysis is intended to address the dead/deactivated code.  However, any such occurrences would 
need to be addressed. 

Verification/Testing.  Test coverage of high-level and low-level OO requirements will 
likely require different testing strategies and tactics than the traditional structured approach.  The 
characteristics of inheritance, encapsulation, and polymorphism drive the need for the different 
strategies and tactics.  Most developers are using a “design for testability” approach to begin 
addressing any test issues early in the program. 

Overuse of Inheritance.  Overuse of inheritance, particularly multiple inheritance, can 
lead to unintended connections among classes [3].  This could lead to difficulty in meeting the 
DO-178B/ED-12B objective of data and control coupling. 

Ambiguity.  Inheritance, polymorphism, and operator overloading through dynamic or 
run-time linkage can lead to ambiguity.  Polymorphic and overloaded functions may make 
tracing and verifying the code difficult [3].  Since DO-178B/ED-12B requires that the source 
code be verifiable, attention should be paid to such issues. 
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Coding Issues.  Some OO languages have “features” that could make it extremely 
difficult or impossible to satisfy the objectives of DO-178B/ED-12B.  In many cases, a well-
defined sub-set of the language may be identified and documented in the coding standards that 
will allow compliance to objectives for a given software level.  As an example, ANSI C++ has 
some  “features” that might make meeting the objectives of DO-178B/ED-12B impossible.  
These obstacles might be addressed by including the following restrictions in the coding 
standards: 

♦ Minimize dynamic binding 
♦ Minimize operator overloading 
♦ Minimize control flow complexity 
♦ Use “new” only at initialization 
♦ Avoid using “delete” 
♦ Avoid use of exception handling 
♦ Avoid multiple inheritance 
♦ Avoid type-cast pointers 

 
Library Dependence.  The dependence on libraries is a concern for safety-critical systems—

it is often unclear as to what is happening in the object libraries.  Libraries may not have been 
developed with safety-critical applications in mind and may not have the integrity required for 
such applications.  Use of libraries must be carefully considered and verified for proper 
functionality. 

Conclusions 
 
An article in Computer Design, entitled “Building Tomorrow's Embedded Software,” 

stated, “Size, complexity, and time-to-market issues are causing fundamental changes in how 
embedded software is written. While there are solutions to borrow from desktop development, 
they have to be chosen judiciously” [12].  Such is the case with safety-critical systems’ 
development. The use of OOT in aviation systems is being considered by many developers of 
airborne software.  The jury is still out with respect to its use.  There are advantages and 
disadvantages for software all development methods – OOT is no exception. 

Developers should carefully weigh their program needs with the benefits and risks of 
OOT.  There are a number of potential certification concerns, as discussed in this paper.  The 
author intends to further investigate each of the certification concerns in more depth in order 
determine potential risk mitigation strategies. 
  



12 
NOTE:  This position paper has been coordinated among the software specialists of certification authorities 
from the United States, Europe, and Canada.  However, it does not constitute official policy or guidance from 
any of the authorities.  This document is provided for educational and informational purposes only and 
should be discussed with the appropriate certification authority when considering for actual projects. 
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